European Technical Assessment ETA-20/0023 of 27.01.2020 General part **Technical Assessment Body issuing the European Technical Assessment** Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant **This European Technical Assessment contains** This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Österreichisches Institut für Bautechnik (OIB) Austrian Institute of Construction Engineering Pfeifer CLT Brettsperrholz Solid wood slab elements to be used as structural elements in buildings Pfeifer Timber GmbH Mühlenstraße 7 86556 Unterbernbach Germany Pfeifer Holz Schlitz GmbH & Co KG Bahnhofstraße 63 36110 Schlitz Germany 15 pages including 4 Annexes which form an integral part of this assessment. European Assessment Document (EAD) 130005-00-0304 "Solid wood slab element to be used as a structural element in buildings". #### Remarks Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made with the written consent of Austrian Institute of Construction Engineering. Any partial reproduction has to be identified as such. Specific parts #### 1 Technical description of the product #### 1.1 General This European Technical Assessment (ETA) applies to the cross laminated timber "Pfeifer CLT Brettsperrholz". Pfeifer CLT Brettsperrholz is made of softwood boards which are bonded together in order to form cross laminated timber (solid wood slab elements). Generally, adjacent layers of the softwood boards are arranged perpendicular (angle of 90°) to each other, see Annex 1, Figure 1. The principle structure of the cross laminated timber is shown in Annex 1, Figure 1 and Figure 2. Surfaces of the boards are planed. The solid wood slab elements consist of at least three and up to fifteen adjacent layers which are arranged perpendicular to each other. With regard to the thickness of the solid wood slab element, thickness and orientation of individual layers are symmetrically assembled. A maximum of three adjacent layers may be arranged in the same direction as long as a symmetric cross-section with cross-layering remains and their all over thickness does not exceed 90 mm. Single board layers (maximum 50 % of the cross section) may be replaced by one- and multilayer wood-based panels. The solid wood panels shall be suitable for structural use. The surfaces of the solid wood slabs may be covered with additional layers without load bearing function. This panels are not part of this European Technical Assessment. Pfeifer CLT Brettsperrholz and the boards for its manufacturing correspond to the specifications given in the Annexes 1 and 2. The material characteristics, dimensions and tolerances of Pfeifer CLT Brettsperrholz, not indicated in these Annexes, are given in the technical file¹ of the European Technical Assessment. The application of wood preservatives and flame retardants is not subject of the European Technical Assessment. #### 1.2 Components #### 1.2.1 Boards The specification of the boards is given in Annex 2, Table 2. Boards are visually or machine strength graded. Only technically dried wood shall be used. Wood species is European spruce or equivalent softwood. #### 1.2.2 Wood-based panels Wood-based panels are in accordance with EN 13986 or a European Technical Assessment. ¹ The technical file of the European Technical Assessment is deposited at Österreichisches Institut für Bautechnik and, in so far as is relevant to the tasks of the notified product certification body involved in the assessment and verification of constancy of performance procedure, is handed over to the notified product certification body. #### 1.2.3 Adhesive The adhesive for bonding of the cross laminated timber and the finger joints of the individual boards shall conform to EN 301 or EN 15425. # 2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (thereafter EAD) #### 2.1 Intended use The solid wood slab is intended to be used as a structural or non-structural element in buildings and timber structures. The solid wood slab shall be subjected to static and quasi-static actions only. The solid wood slab is intended to be used in service classes 1 and 2 according to EN 1995-1-1². Members which are directly exposed to the weather shall be provided with an effective protection for the solid wood slab element in service. #### 2.2 General assumptions The solid wood slab elements are manufactured in accordance with the provisions of the European Technical Assessment using the manufacturing process as identified in the inspection of the manufacturing plant by Österreichisches Institut für Bautechnik and laid down in the technical file. The manufacturer shall ensure that the requirements in accordance with the Clauses 1, 2 and 3 as well as with the Annexes of the European Technical Assessment are made known to those who are concerned with design and execution of the works. Layers of planed boards shall be bonded together to the required thickness of the cross laminated timber. The individual boards shall be jointed in longitudinal direction by means of finger joints according to EN 14080, there shall be no butt joints. Adhesive shall be applied on one face of each board. The edges of the boards need not to be bonded. #### Design The European Technical Assessment only applies to the manufacture and use of cross laminated timber. Verification of stability of the works including application of loads on the cross laminated timber is not subject to the European Technical Assessment. The following conditions shall be observed: - Design of cross laminated timber members is carried out under the responsibility of an engineer experienced in such products. - Design of the works shall account for the protection of the cross laminated timber. - The cross laminated timber members are installed correctly. Design of cross laminated timber members elements may be according to EN 1995-1-1 and EN 1995-1-2, taking into account of Annexes 2 and 3 of the European Technical Assessment. Standards and regulations in force at the place of use shall be considered. #### Packaging, transport, storage, maintenance, replacement and repair Concerning product packaging, transport, storage, maintenance, replacement and repair it is the responsibility of the manufacturer to undertake the appropriate measures and to advise his clients on the transport, storage, maintenance, replacement and repair of the product as he considers necessary. Reference documents are listed in Annex 4. #### **Installation** It is assumed that the product will be installed according to the manufacturer's instructions or (in absence of such instructions) according to the usual practice of the building professionals. #### 2.3 Assumed working life The provisions made in the European Technical Assessment (ETA) are based on an assumed intended working life of Pfeifer CLT Brettsperrholz of 50 years, when installed in the works, provided that the cross laminated timber elements are subject to appropriate installation, use and maintenance (see Clause 2.2). These provisions are based upon the current state of the art and the available knowledge and experience³. The indications given as to the working life of the construction product cannot be interpreted as a guarantee neither given by the product manufacturer or his representative nor by EOTA nor by the Technical Assessment Body, but are regarded only as a means for choosing the appropriate products in relation to the expected economically reasonable working life of the works. #### 3 Performance of the product and reference to the methods used for its assessment ### 3.1 Essential characteristics of the product Table 1: Essential characteristics of the product and assessment methods | Nº | Essential characteristic | Product performance | | |---|--|--------------------------|--| | | Basic requirement for construction works 1: Mechanical resistance and stability 1) | | | | 1 | Bending ²⁾ | Annex 2 | | | 2 | Tension and compression ²⁾ | Annex 2 | | | 3 | Shear ²⁾ | Annex 2 | | | 4 | Embedment strength | Annex 2 | | | 5 | Creep and duration of the load | Annex 2 | | | 6 | Dimensional stability | Annex 2 | | | 7 | In-service environment | Annex 2 | | | 8 | Bond integrity | Annex 2 | | | | Basic requirement for construction works 2 | : Safety in case of fire | | | 9 | Reaction to fire | Annex 2 | | | 10 | Resistance to fire | No performance assessed. | | | Basic requirement for construction works 3: Hygiene, health and the environment | | | | | 11 | Content, emission and/or release of dangerous substances | 3.1.1 | | | 12 | Water vapour permeability – Water vapour transmission | Annex 2 | | | Basic requirement for construction works 4: Safety and accessibility in use | | | | | 13 | Impact resistance | Annex 2 | | The real working life of a product incorporated in a specific works depends on the environmental conditions to which that works is subject, as well as on the particular conditions of the design, execution, use and maintenance of that works. Therefore, it cannot be excluded that in certain cases the real working life of the product can also be shorter than the assumed working life. | Basic requirement for construction works 5: Protection against noise | | | |---|--|--------------------------| | 14 | Airborne sound insulation | No performance assessed. | | 15 | Impact sound insulation | No performance assessed. | | 16 | 16 Sound absorption No performance assessed. | | | Basic requirement for construction works 6: Energy economy and heat retention | | | | 17 | Thermal conductivity | Annex 2 | | 18 | Air permeability | Annex 2 | | 19 | Thermal inertia | Annex 2 | ¹⁾ These characteristics also relate to basic requirement for construction works 4. #### 3.1.1 Hygiene, health and the environment The release of dangerous substances is determined according to EAD 130005-00-0304, "Solid wood slab element to be used as a structural element in buildings". No dangerous substances is the performance of the Pfeifer CLT Brettsperrholz in this respect. NOTE In addition to the specific clauses relating to dangerous substances contained in the European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply. #### 3.2 Assessment methods #### 3.2.1 General The assessment of the essential characteristics in Clause 3.1 of Pfeifer CLT Brettsperrholz for the intended use, and in relation to the requirements for mechanical resistance and stability, for safety in case of fire, for hygiene, health and the environment, for safety and accessibility in use, for protection against noise and for energy economy and heat retention in use in the sense of the basic requirements for construction works № 1 to 6 of Regulation (EU) № 305/2011 has been made in accordance with the European Assessment Document EAD 130005-00-0304, Solid wood slab element to be used as a structural element in buildings. ### 3.2.2 Identification The European Technical Assessment for Pfeifer CLT Brettsperrholz is issued on the basis of agreed data that identify the assessed product. Changes to materials, to composition, to characteristics of the product, or to the production process could result in these deposited data being incorrect. Österreichisches Institut für Bautechnik should be notified before the changes are implemented, as an amendment of the European Technical Assessment is possibly necessary. ²⁾ Load bearing capacity and stiffness regarding mechanical actions perpendicular to and in plane of the solid wood slab element. # 4 Assessment and verification of constancy of performance (thereafter AVCP) system applied, with reference to its legal base #### 4.1 System of assessment and verification of constancy of performance According to Commission Decision 97/176/EC the system of assessment and verification of constancy of performance to be applied to Pfeifer CLT Brettsperrholz is System 1. System 1 is detailed in Commission Delegated Regulation (EU) № 568/2014 of 18 February 2014, Annex, 1.2., and provides for the following items - (a) The manufacturer shall carry out - (i) factory production control; - (ii) further testing of samples taken at the manufacturing plant by the manufacturer in accordance with a prescribed test plan⁴; - (b) The notified product certification body shall decide on the issuing, restriction, suspension or withdrawal of the certificate of constancy of performance of the construction product on the basis of the outcome of the following assessments and verifications carried out by that body: - (i) an assessment of the performance of the construction product carried out on the basis of testing (including sampling), calculation, tabulated values or descriptive documentation of the product; - (ii) initial inspection of the manufacturing plant and of factory production control; - (iii) continuous surveillance, assessment and evaluation of factory production control. # 4.2 AVCP for construction products for which a European Technical Assessment has been issued Notified bodies undertaking tasks under System 1 shall consider the European Technical Assessment issued for the construction product in question as the assessment of the performance of that product. Notified bodies shall therefore not undertake the tasks referred to in point 4.1 (b)(i). # 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document #### 5.1 Tasks for the manufacturer #### 5.1.1 Factory production control In the manufacturing plant the manufacturer shall establish and continuously maintain a factory production control. All procedures and specification adopted by the manufacturer shall be documented in a systematic manner. The factory production control shall ensure the constancy of performances of Pfeifer CLT Brettsperrholz with regard to the essential characteristics. The manufacturer shall only use raw materials supplied with the relevant inspection documents as laid down in the control plan. The incoming raw materials shall be subject to controls by the manufacturer before acceptance. Check of incoming materials shall include control of inspection documents presented by the manufacturer of the raw materials. The frequencies of controls conducted during manufacturing and on the assembled product are defined by taking account of the manufacturing process of the product and are laid down in the control plan. ⁴ The prescribed test plan has been deposited with Österreichisches Institut für Bautechnik and is handed over only to the notified product certification body involved in the procedure for the assessment and verification of constancy of performance. The prescribed test plan is also referred to as control plan. The results of factory production control are recorded and evaluated. The records include at least the following data: - Designation of the product, basic materials and components - Type of control or test - Date of manufacture of the product and date of testing of the product or basic materials or components - Results of controls and tests and, if appropriate, comparison with requirements - Name and signature of person responsible for factory production control The records shall be kept at least for ten years time after the construction product has been placed on the market and shall be presented to the notified product certification body involved in continuous surveillance. On request they shall be presented to Österreichisches Institut für Bautechnik. #### 5.1.2 Declaration of performance The manufacturer is responsible for preparing the declaration of performance. When all the criteria of the assessment and verification of constancy of performance are met, including the certificate of conformity issued by the notified product certification body, the manufacturer shall draw up a declaration of performance. #### 5.2 Tasks for the notified product certification body 5.2.1 Initial inspection of the manufacturing plant and of factory production control The notified product certification body shall verify the ability of the manufacturer for a continuous and orderly manufacturing of Pfeifer CLT Brettsperrholz according to the European Technical Assessment. In particular the following items shall be appropriately considered - Personnel and equipment - The suitability of the factory production control established by the manufacturer - Full implementation of the control plan - 5.2.2 Continuous surveillance, assessment and evaluation of factory production control The notified product certification body shall visit the factory at least once a year for routine inspection. In particular the following items shall be appropriately considered - The manufacturing process including personnel and equipment - The factory production control - The implementation of the control plan The results of continuous surveillance are made available on demand by the notified product certification body to Österreichisches Institut für Bautechnik. When the provisions of the European Technical Assessment and the control plan are no longer fulfilled, the certificate of constancy of performance is withdrawn by the notified product certification body. Issued in Vienna on 27.01.2020 by Österreichisches Institut für Bautechnik The original document is signed by: Rainer Mikulits Managing Director Figure 1: Principle structure of the solid wood slab Figure 2: Principle structure of cross laminated timber with 5 layers | Pfeifer CLT Brettsperrholz | Annex 1 | |-------------------------------------|---| | Structure of cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | Table 2: Dimensions and specifications | Item | | Dimension / Specification | | |--|----|--|--| | Cross laminated timber | | | | | Thickness | mm | 57 to 320 | | | Width | m | ≤ 3.10 | | | Length | m | ≤ 14.5 | | | Number of layers | | 3 to 15
symmetric assembly | | | Maximum number of adjacent layers arranged in the same direction | _ | 2 for n = 5
3 for n > 5 | | | Maximum width of joints between boards within one layer | mm | ≤ 6 mm
Mean value 2 mm | | | Board | ds | | | | Surface | | planed | | | Thickness (planed dimension) | mm | 18 to 45 | | | Width | mm | 72 to 300 | | | Ratio width to thickness | _ | ≥ 4 : 1 | | | Boards shall be graded with suitable visual and/or machine procedures to be able to assign them to a strength class according to EN 338. | | | | | Cover layer | | C24 | | | Inner layer | | ≤ 10 % C16
≥ 90 % C24 | | | Moisture of wood according to EN 13183-2 | % | 10 ± 2 or 12 ± 2 Within one member of cross laminated timber only one of the specified moisture ranges shall be applied. | | | Finger joints | | EN 14080 | | | Pfeifer CLT Brettsperrholz | Annex 2 | |---|---| | Characteristic data of cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | Table 3: Product characteristics of the solid wood slab | BWR | Essential characteristic | Assessment method | Level / Class /
Description | |-----|--|---|--| | 1 | Mechanical resistance and stability | | | | | 1. Mechanical actions perpendicular to cross laminated timber | | | | | Strength class of boards | EN 338 | Cover layer: C24
Inner layer:
≤ 10 % C16
≥ 90 % C24 | | | Modulus of elasticity | | | | | parallel to the grain of the boards $E_{\it 0, mean}$ | <i>I_{eff,}</i> Annex 3 EAD 130005-00-0304, 2.2.1.1 | 11 000 N/mm² | | | $-$ perpendicular to the grain of the boards $\it E_{90, mean}$ | EN 338 | 370 N/mm² | | | Shear modulus | | | | | parallel to the grain of the boards $G_{090, mean}$ | EN 338 | 690 N/mm² | | | perpendicular to the grain of
the boards (rolling shear
modulus) <i>G</i>_{9090, mean} | EAD 130005-00-0304, 2.2.1.1 | 50 N/mm² | | | Bending strength | | | | | parallel to the grain of the boards $f_{m, k}$ | Weff, Annex 3
EAD 130005-00-0304, 2.2.1.1 | 24 N/mm² | | | Tensile strength | | | | | - perpendicular to the grain of the boards $f_{t, 90, k}$ | EN 338, reduced | 0.12 N/mm² | | | Compressive strength | | | | | - perpendicular to the grain of the boards $f_{c, 90, k}$ | EN 338 | 2.5 N/mm² | | | Shear strength | | | | | parallel to the grain of the boards $f_{v, 090, k}$ | A_{gross} , Annex 3
EAD 130005-00-0304, 2.2.1.3 | 3.7 N/mm² | | | perpendicular to the grain of the boards (rolling shear | A _{gross} , Annex 3
EAD 130005-00-0304, 2.2.1.3 | 4.0 N/2 | | | strength) $f_{v, 9090, k}$ | | 1.3 N/mm² | | Pfeifer CLT Brettsperrholz | Annex 2 | |---|---| | Characteristic data of cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | | BWR | Essential characteristic | Assessment method | Level / Class /
Description | |-----|---|--|--| | 1 | Mechanical resistance and stability | | | | | 2. Mechanical actions in plane of cross laminated timber | | | | | Strength class of boards | EN 338 | Cover layer: C24
Inner layer:
≤ 10 % C16
≥ 90 % C24 | | | Modulus of elasticity | | | | | $-$ parallel to the grain of the boards $\it E_{0, mean}$ | A _{net} , I _{net} , Annex 3
EAD 130005-00-0304, 2.2.1.1 | 11 000 N/mm² | | | Shear modulus | | | | | parallel to the grain of the boards $G_{090, mean}$ | A _{net} , Annex 3
EAD 130005-00-0304, 2.2.1.3 | 450 N/mm² | | | Bending strength | | | | | parallel to the grain of the boards $f_{m, k}$ | <i>W_{net}</i> , Annex 3 EAD 130005-00-0304, 2.2.1.1 | 24 N/mm² | | | Tensile strength | | | | | parallel to the grain of the boards f_t, ρ, k | EN 338 | 14.5 N/mm² | | | Compressive strength | | | | | parallel to the grain of the boards $f_{c,\ \theta,\ k}$ | EN 338 | 21 N/mm² | | | Shear strength | | | | | parallel to the grain of the boards $f_{v, 090, k}$ | A _{net} , Annex 3
EAD 130005-00-0304, 2.2.1.3 | 3.5 N/mm² | | | 3. Other mechanical actions Creep and duration of load | | | | | | | I 1995-1-1 for glued | | | | | | | | | | extend that adverse | | | Fasteners | EN 1995-1-1, the direction of gr
shall be taken as reference | ain of the cover layer | | Pfeifer CLT Brettsperrholz | Annex 2 | |---|---| | Characteristic data of cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | | BWR | Essential characteristic | Assessment method | Level / Class /
Description | |-----------------------------------|--|--|----------------------------------| | | In-service environment | | | | | Durability of timber | EN 1995-1-1 | | | | Service classes | | 1 and 2 | | | Bond integrity | EAD 130005-00-0304 | Pass | | 2 | Reaction to fire | | | | | Glued laminated timber products | Commission Decision 2005/610/EC | Mean density of wood ≥ 380 kg/m³ | | | | | Euroclass D-s2, d0 | | 3 Hygiene, health and environment | | ent | | | | Vapour permeability, μ, including joints within the layers | EN ISO 10456 | 50 (dry) to 20 (wet) | | 4 | Safety and accessibility in use | | | | | Impact resistance | Soft body resistance is assume walls with a minimum of 3 layer thickness of 60 mm. | | | 6 | Energy economy and heat retention | | | | | Thermal conductivity λ of wood | EN ISO 10456 | 0.12 W/(m·K) | | | Air permeability | EN 12114 | Class 4 according to EN 12207 | | | Thermal inertia, specific heat capacity c _p of wood | EN ISO 10456 | 1 600 J/(kg·K) | | Pfeifer CLT Brettsperrholz | Annex 2 | |---|---| | Characteristic data of cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | ### Mechanical actions perpendicular to plane and in plane of cross laminated timber #### General Due to the perpendicular orientation of the boards, cross laminated timber is able to transfer loads in all directions according to its condition of support. For cross laminated timber multi-axle stressed in both principal directions, different stiffness for the two principal directions shall be considered. For calculation of characteristic values of cross-section, only boards which are oriented in direction of the mechanical action may be employed. For design of cross laminated timber according to EN 1995-1-1, characteristic strength and stiffness of solid wood according to Annex 2 shall be taken. ## Mechanical actions perpendicular to cross laminated timber #### Where *ti*......Thickness of board layers in direction of mechanical actions $\overline{t_i}$Thickness board layers perpendicular direction to of mechanical actions The bending stiffness is specified in relation to the effective moment of inertia I_{eff} . The calculation of the effective moment of inertia and therewith of the effective bending stiffness is according to EN 1995-1-1. For I_{eff} see clause 9.1.3 and Annex B of EN 1995-1-1. The term $rac{S_i}{K_i}$ of EN 1995-1-1 should be substituted by $rac{\overline{t_i}}{G_{9090} \cdot b}$. $$I_i = \frac{b \cdot t_i^3}{12}$$ $$W_{eff}$$ = $\frac{2 \cdot I_{eff}}{t_{tot}}$ $$A_i = b \cdot t_i$$ $$W_{eff} = \frac{2 \cdot I_{eff}}{t_{tot}}$$ $$h_{tot} = \sum_{i} (t_i + \bar{t_i})$$ $$\tau_{v, d} = \frac{1.5 \cdot V_d}{A_{gross}}$$ $$A_{gross} = b \cdot t_{tot}$$ #### Where I moment of inertia I eff..... effective moment of inertia s......spacing of fasteners according to EN 1995-1-1 (not relevant for solid wood slab) K.....slip modulus according to EN 1995-1-1 (not relevant for solid wood slab) G_{9090} shear modulus of the board perp. to grain (rolling shear modulus); $G_{9090} = 50 \text{ N/mm}^2$ b...... width of the member of cross laminated timber | Pfeifer CLT Brettsperrholz | Annex 3 | |--|---| | Design considerations for cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | ### Mechanical actions in plane of the solid wood slab Where *H* ≤ 400 mm t_i Thickness of board layers in direction of mechanical actions $\overline{t_i}$ Thickness of board layers perpendicular to direction of mechanical actions V...... Shear force Under the terms of the technical beam theory the following equations may be used. Moment of inertia $$I_{net} = \frac{T \cdot H^3}{12}$$ Shear strength $$\tau_{v, d} = \text{Maximum} \begin{cases} \frac{3}{2} \cdot \frac{V_d}{A_{x, net}} \\ \frac{3}{2} \cdot \frac{V_d}{A_{z, net}} \end{cases}$$ Section modulus $$W_{net} = \frac{T \cdot H^2}{6}$$ $$A_{x, net} = H \cdot \sum_{i} \bar{t}_{i}$$ $$A_{z, net} = H \cdot \sum_{i} t_{i}$$ | Pfeifer CLT Brettsperrholz | Annex 3 | |--|---| | Design considerations for cross laminated timber | of European Technical Assessment
ETA-20/0023 of 27.01.2020 | EAD 130005-00-0304, European Assessment Document for "Solid wood slab element to be used as a structural element in buildings" EN 301 (11.2017), Adhesives, phenolic and aminoplastic, for load-bearing timber structures – Classification and performance requirements EN 338 (04.2016), Structural timber – Strength classes EN 1995-1-1 (11.2004), +AC (06.2006), +A1 (06.2008), +A2 (05.2014), Eurocode 5 – Design of timber structures - Part 1-1: General – Common rules and rules for buildings EN 1995-1-2 (11.2004) +AC (06.2006), +AC (03.2009), Eurocode 5 – Design of timber structures – Part 1-2: General – Structural fire design EN 13183-2 (04.2002), Moisture content of a piece of sawn timber – Part 2: Estimation by electrical resistance method EN 14080 (06.2013), Timber structures – Glued laminated timber and glued solid timber – Requirements EN 15425 (01.2017), Adhesives – One component polyurethane for load bearing timber structures – Classification and performance requirements EN ISO 10456 (12.2007), +AC (12.2009), Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values | Pfeifer CLT Brettsperrholz | Annex 4 | |----------------------------|---| | Reference documents | of European Technical Assessment
ETA-20/0023 of 27.01.2020 |